Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biotransformation of 2,4,6-trinitrotoluene with Phanerochaete chrysosporium in agitated cultures at pH 4.5.

Identifieur interne : 000B45 ( Main/Exploration ); précédent : 000B44; suivant : 000B46

Biotransformation of 2,4,6-trinitrotoluene with Phanerochaete chrysosporium in agitated cultures at pH 4.5.

Auteurs : J. Hawari [Canada] ; A. Halasz ; S. Beaudet ; L. Paquet ; G. Ampleman ; S. Thiboutot

Source :

RBID : pubmed:10388692

Descripteurs français

English descriptors

Abstract

The biotransformation of 2,4,6-trinitrotoluene (TNT) (175 microM) by Phanerochaete chrysosporium with molasses and citric acid at pH 4.5 was studied. In less than 2 weeks, TNT disappeared completely, but mineralization (liberated 14CO2) did not exceed 1%. A time study revealed the presence of several intermediates, marked by the initial formation of two monohydroxylaminodinitrotoluenes (2- and 4-HADNT) followed by their successive transformation to several other products, including monoaminodinitrotoluenes (ADNT). A group of nine acylated intermediates were also detected. They included 2-N-acetylamido-4,6-dinitrotoluene and its p isomer, 2-formylamido-4, 6-dinitrotoluene and its p isomer (as acylated ADNT), 4-N-acetylamino-2-amino-6-nitrotoluene and 4-N-formylamido-2-amino-6-nitrotoluene (as acetylated DANT), 4-N-acetylhydroxy-2,6-dinitrotoluene and 4-N-acetoxy-2, 6-dinitrotoluene (as acetylated HADNT), and finally 4-N-acetylamido-2-hydroxylamino-6-nitrotoluene. Furthermore, a fraction of HADNTs were found to rearrange to their corresponding phenolamines (Bamberger rearrangement), while another group dimerized to azoxytoluenes which in turn transformed to azo compounds and eventually to the corresponding hydrazo derivatives. After 30 days, all of these metabolites, except traces of 4-ADNT and the hydrazo derivatives, disappeared, but mineralization did not exceed 10% even after the incubation period was increased to 120 days. The biotransformation of TNT was accompanied by the appearance of manganese peroxidase (MnP) and lignin-dependent peroxidase (LiP) activities. MnP activity was observed almost immediately after TNT disappearance, which was the period marked by the appearance of the initial metabolites (HADNT and ADNT), whereas the LiP activity was observed after 8 days of incubation, corresponding to the appearance of the acyl derivatives. Both MnP and LiP activities reached their maximum levels (100 and 10 U/liter, respectively) within 10 to 15 days after inoculation.

DOI: 10.1128/AEM.65.7.2977-2986.1999
PubMed: 10388692
PubMed Central: PMC91445


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biotransformation of 2,4,6-trinitrotoluene with Phanerochaete chrysosporium in agitated cultures at pH 4.5.</title>
<author>
<name sortKey="Hawari, J" sort="Hawari, J" uniqKey="Hawari J" first="J" last="Hawari">J. Hawari</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biotechnology Research Institute, National Research Council, Montreal, PQ H4P 2R2, Canada. Jalal.Hawari@NRC.Ca</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Biotechnology Research Institute, National Research Council, Montreal, PQ H4P 2R2</wicri:regionArea>
<wicri:noRegion>PQ H4P 2R2</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Halasz, A" sort="Halasz, A" uniqKey="Halasz A" first="A" last="Halasz">A. Halasz</name>
</author>
<author>
<name sortKey="Beaudet, S" sort="Beaudet, S" uniqKey="Beaudet S" first="S" last="Beaudet">S. Beaudet</name>
</author>
<author>
<name sortKey="Paquet, L" sort="Paquet, L" uniqKey="Paquet L" first="L" last="Paquet">L. Paquet</name>
</author>
<author>
<name sortKey="Ampleman, G" sort="Ampleman, G" uniqKey="Ampleman G" first="G" last="Ampleman">G. Ampleman</name>
</author>
<author>
<name sortKey="Thiboutot, S" sort="Thiboutot, S" uniqKey="Thiboutot S" first="S" last="Thiboutot">S. Thiboutot</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1999">1999</date>
<idno type="RBID">pubmed:10388692</idno>
<idno type="pmid">10388692</idno>
<idno type="pmc">PMC91445</idno>
<idno type="doi">10.1128/AEM.65.7.2977-2986.1999</idno>
<idno type="wicri:Area/Main/Corpus">000B39</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B39</idno>
<idno type="wicri:Area/Main/Curation">000B39</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B39</idno>
<idno type="wicri:Area/Main/Exploration">000B39</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Biotransformation of 2,4,6-trinitrotoluene with Phanerochaete chrysosporium in agitated cultures at pH 4.5.</title>
<author>
<name sortKey="Hawari, J" sort="Hawari, J" uniqKey="Hawari J" first="J" last="Hawari">J. Hawari</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biotechnology Research Institute, National Research Council, Montreal, PQ H4P 2R2, Canada. Jalal.Hawari@NRC.Ca</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Biotechnology Research Institute, National Research Council, Montreal, PQ H4P 2R2</wicri:regionArea>
<wicri:noRegion>PQ H4P 2R2</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Halasz, A" sort="Halasz, A" uniqKey="Halasz A" first="A" last="Halasz">A. Halasz</name>
</author>
<author>
<name sortKey="Beaudet, S" sort="Beaudet, S" uniqKey="Beaudet S" first="S" last="Beaudet">S. Beaudet</name>
</author>
<author>
<name sortKey="Paquet, L" sort="Paquet, L" uniqKey="Paquet L" first="L" last="Paquet">L. Paquet</name>
</author>
<author>
<name sortKey="Ampleman, G" sort="Ampleman, G" uniqKey="Ampleman G" first="G" last="Ampleman">G. Ampleman</name>
</author>
<author>
<name sortKey="Thiboutot, S" sort="Thiboutot, S" uniqKey="Thiboutot S" first="S" last="Thiboutot">S. Thiboutot</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="ISSN">0099-2240</idno>
<imprint>
<date when="1999" type="published">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodegradation, Environmental (MeSH)</term>
<term>Citric Acid (MeSH)</term>
<term>Culture Media (chemistry)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Molasses (MeSH)</term>
<term>Phanerochaete (growth & development)</term>
<term>Phanerochaete (metabolism)</term>
<term>Time Factors (MeSH)</term>
<term>Trinitrotoluene (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>2,4,6-Trinitro-toluène (métabolisme)</term>
<term>Acide citrique (MeSH)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Facteurs temps (MeSH)</term>
<term>Milieux de culture (composition chimique)</term>
<term>Mélasses (MeSH)</term>
<term>Phanerochaete (croissance et développement)</term>
<term>Phanerochaete (métabolisme)</term>
<term>Spectrométrie de masse (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Culture Media</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Trinitrotoluene</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Citric Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Milieux de culture</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>2,4,6-Trinitro-toluène</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Hydrogen-Ion Concentration</term>
<term>Mass Spectrometry</term>
<term>Molasses</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acide citrique</term>
<term>Concentration en ions d'hydrogène</term>
<term>Dépollution biologique de l'environnement</term>
<term>Facteurs temps</term>
<term>Mélasses</term>
<term>Spectrométrie de masse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The biotransformation of 2,4,6-trinitrotoluene (TNT) (175 microM) by Phanerochaete chrysosporium with molasses and citric acid at pH 4.5 was studied. In less than 2 weeks, TNT disappeared completely, but mineralization (liberated 14CO2) did not exceed 1%. A time study revealed the presence of several intermediates, marked by the initial formation of two monohydroxylaminodinitrotoluenes (2- and 4-HADNT) followed by their successive transformation to several other products, including monoaminodinitrotoluenes (ADNT). A group of nine acylated intermediates were also detected. They included 2-N-acetylamido-4,6-dinitrotoluene and its p isomer, 2-formylamido-4, 6-dinitrotoluene and its p isomer (as acylated ADNT), 4-N-acetylamino-2-amino-6-nitrotoluene and 4-N-formylamido-2-amino-6-nitrotoluene (as acetylated DANT), 4-N-acetylhydroxy-2,6-dinitrotoluene and 4-N-acetoxy-2, 6-dinitrotoluene (as acetylated HADNT), and finally 4-N-acetylamido-2-hydroxylamino-6-nitrotoluene. Furthermore, a fraction of HADNTs were found to rearrange to their corresponding phenolamines (Bamberger rearrangement), while another group dimerized to azoxytoluenes which in turn transformed to azo compounds and eventually to the corresponding hydrazo derivatives. After 30 days, all of these metabolites, except traces of 4-ADNT and the hydrazo derivatives, disappeared, but mineralization did not exceed 10% even after the incubation period was increased to 120 days. The biotransformation of TNT was accompanied by the appearance of manganese peroxidase (MnP) and lignin-dependent peroxidase (LiP) activities. MnP activity was observed almost immediately after TNT disappearance, which was the period marked by the appearance of the initial metabolites (HADNT and ADNT), whereas the LiP activity was observed after 8 days of incubation, corresponding to the appearance of the acyl derivatives. Both MnP and LiP activities reached their maximum levels (100 and 10 U/liter, respectively) within 10 to 15 days after inoculation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">10388692</PMID>
<DateCompleted>
<Year>1999</Year>
<Month>09</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0099-2240</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>65</Volume>
<Issue>7</Issue>
<PubDate>
<Year>1999</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Biotransformation of 2,4,6-trinitrotoluene with Phanerochaete chrysosporium in agitated cultures at pH 4.5.</ArticleTitle>
<Pagination>
<MedlinePgn>2977-86</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The biotransformation of 2,4,6-trinitrotoluene (TNT) (175 microM) by Phanerochaete chrysosporium with molasses and citric acid at pH 4.5 was studied. In less than 2 weeks, TNT disappeared completely, but mineralization (liberated 14CO2) did not exceed 1%. A time study revealed the presence of several intermediates, marked by the initial formation of two monohydroxylaminodinitrotoluenes (2- and 4-HADNT) followed by their successive transformation to several other products, including monoaminodinitrotoluenes (ADNT). A group of nine acylated intermediates were also detected. They included 2-N-acetylamido-4,6-dinitrotoluene and its p isomer, 2-formylamido-4, 6-dinitrotoluene and its p isomer (as acylated ADNT), 4-N-acetylamino-2-amino-6-nitrotoluene and 4-N-formylamido-2-amino-6-nitrotoluene (as acetylated DANT), 4-N-acetylhydroxy-2,6-dinitrotoluene and 4-N-acetoxy-2, 6-dinitrotoluene (as acetylated HADNT), and finally 4-N-acetylamido-2-hydroxylamino-6-nitrotoluene. Furthermore, a fraction of HADNTs were found to rearrange to their corresponding phenolamines (Bamberger rearrangement), while another group dimerized to azoxytoluenes which in turn transformed to azo compounds and eventually to the corresponding hydrazo derivatives. After 30 days, all of these metabolites, except traces of 4-ADNT and the hydrazo derivatives, disappeared, but mineralization did not exceed 10% even after the incubation period was increased to 120 days. The biotransformation of TNT was accompanied by the appearance of manganese peroxidase (MnP) and lignin-dependent peroxidase (LiP) activities. MnP activity was observed almost immediately after TNT disappearance, which was the period marked by the appearance of the initial metabolites (HADNT and ADNT), whereas the LiP activity was observed after 8 days of incubation, corresponding to the appearance of the acyl derivatives. Both MnP and LiP activities reached their maximum levels (100 and 10 U/liter, respectively) within 10 to 15 days after inoculation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hawari</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Biotechnology Research Institute, National Research Council, Montreal, PQ H4P 2R2, Canada. Jalal.Hawari@NRC.Ca</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Halasz</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Beaudet</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Paquet</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ampleman</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thiboutot</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003470">Culture Media</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>118-96-7</RegistryNumber>
<NameOfSubstance UI="D014303">Trinitrotoluene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2968PHW8QP</RegistryNumber>
<NameOfSubstance UI="D019343">Citric Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019343" MajorTopicYN="N">Citric Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003470" MajorTopicYN="N">Culture Media</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008965" MajorTopicYN="N">Molasses</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014303" MajorTopicYN="N">Trinitrotoluene</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1999</Year>
<Month>7</Month>
<Day>2</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1999</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1999</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">10388692</ArticleId>
<ArticleId IdType="pmc">PMC91445</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.65.7.2977-2986.1999</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Can J Microbiol. 1995 Nov;41(11):984-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7497356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Dec;62(12):4669-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1970 Apr 24;168(3930):482-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5436083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1993 Jul;59(7):2171-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8357251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Sep;58(9):3199-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1444437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1986 Feb 1;244(2):750-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3080953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 1998 Mar;39(3):185-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9570909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1993 Apr;39(4):430-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8500012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Aug;58(8):2397-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1514787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 Apr;175(8):2278-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8468288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 1990;154(4):317-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2244784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 May;63(5):2007-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Nov;58(11):3605-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1482183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Apr;81(8):2280-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Jan;60(1):187-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8117077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Jun;64(6):2200-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9603835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Jan;64(1):246-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16349484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1991 Nov;57(11):3200-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1781682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Jul;62(7):2651-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1982 Sep;44(3):757-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7138009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1976 Apr;31(4):576-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">773306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Dec;61(12):4209-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8534088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Apr;63(4):1421-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Jan;58(1):221-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1539977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1978 May;35(5):949-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">655710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1990 Jun;56(6):1666-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2383008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 1998 Jan;36(1):45-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9405746</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Ampleman, G" sort="Ampleman, G" uniqKey="Ampleman G" first="G" last="Ampleman">G. Ampleman</name>
<name sortKey="Beaudet, S" sort="Beaudet, S" uniqKey="Beaudet S" first="S" last="Beaudet">S. Beaudet</name>
<name sortKey="Halasz, A" sort="Halasz, A" uniqKey="Halasz A" first="A" last="Halasz">A. Halasz</name>
<name sortKey="Paquet, L" sort="Paquet, L" uniqKey="Paquet L" first="L" last="Paquet">L. Paquet</name>
<name sortKey="Thiboutot, S" sort="Thiboutot, S" uniqKey="Thiboutot S" first="S" last="Thiboutot">S. Thiboutot</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Hawari, J" sort="Hawari, J" uniqKey="Hawari J" first="J" last="Hawari">J. Hawari</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B45 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B45 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:10388692
   |texte=   Biotransformation of 2,4,6-trinitrotoluene with Phanerochaete chrysosporium in agitated cultures at pH 4.5.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:10388692" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020